Improving Patients Subcutaneous Immunoglobulin (SCIg) Treatments Through Right Selection of Infusion Device Technology

Background
Previous studies have shown the importance of ancillary supplies on outcomes and corrective action dealing with local-site adverse events (AEs) during SCIg administrations. The infusion device employed is a significant part contributing to the overall performance of all elements connected together in the delivery system to perform the infusion. There are three types of infusion devices available for SCIg infusions. Each one creates different characteristics to support a successful SCIg infusion outcome:

- Constant Flow Systems (CFS) - electronic; systems use pressure of a coiled spring; as spring expands, the pressure decreases (pressure fall-off).
- Variable Coiled Spring Pressure (VSP) - systems use pressure of a coiled spring; as spring expands, the pressure decreases (pressure fall-off).
- Constant Pressure Systems (CPS) - maintain a constant pressure from start to end and at the outlet of the device or pump, and the distal pressure at the simulated patient depot were measured, recorded and compared.

Methods
Laboratory tests and clinical experiences have confirmed theoretical models of the three types of infusion devices and systems; CFS, VSP and CPS. The test in the laboratory included simulation of patient sites (depots) when different infusion devices where applied. Pressure at the outlet of the device or pump, and the pressure at the simulated patient depot were measured, recorded and compared.

Results
The results for the CFS show that as the depot saturates, the pressure at the simulated patient infusion site and at the pump outlet increase. This process continues until the pressure (occlusion) alarm is activated.

- The VSP shows decreasing pressure as fluid is delivered. This is a normal consequence of any coiled spring as the force will drop with increasing distance. As a result, the measured pressure at the pump decreases during the delivery, resulting in decreasing flow rate.
- The CPS shows a constant pressure at the pump independent of the volume delivered or the patient infusion-site pressure. The CPS reduced the flow rate in direct proportion to the simulated tissues saturation. For mechanical pumps and devices the flow rate is related to the differences in pressure between the pump and the patient depot.

Conclusion
The CPS demonstrated significantly lower pressures than CFS and more consistent flow rate performance and pressure control than VSP. For SCIg administrations, the CPS response to infusion-site saturation provides an improved level of safety and comfort, reduction of AEs and increased patient compliance. AEs can be minimized and reduced through lower infusion pressures, defined and controlled flow rates limiting delivery when tissue perfusion is compromised as the patient’s infusion-sites are saturating.

Identify the infusion device most appropriate for SCIg administration with considerations to the ancillary supplies, such as the subcutaneous needle set (SNS) and flow rate control device. Each system has advantages and disadvantages affecting the overall therapeutic outcome.

Infusion Devices Ratings:

- DPS is the system of choice:
 - Significantly lower pressure than CFS
 - More consistent flow rate performance and pressure control than VSP
 - Responds to infusion-site saturation and provides feedback to improve level of safety and comfort
 - Adverse effects can be reduced with:
 - Lower infusion pressures
 - Defined/controlled flow rates

Reference:

Contributing authors:
Fred L. Ma, M.D., Ph.D. 1, Chatarina Soderman, RN. MBA 2, Andrew Sealfon 3, Paul Mark Baker M.D 4

1 President, RMS Medical Products, 4 Crystal Run Healthcare
3 President, RMS Medical Products, 4 Crystal Run Healthcare
2 201x1167
3 201x1647
4 201x1785

RS PO2_InfusionDevices_IgNS2016_vA

24 Carpenter Road Chester, NY 10918 USA